Protocol to perform pressurized blister tests on thin elastic films.
نویسندگان
چکیده
This work aims to identify common challenges in the preparation of the blister test devices designed for the measurement of the energy release rate for brittle thin films and to propose easy-to-implement solutions accordingly. To this end, we provide a step-by-step guide for fabricating a blister test device comprised of thin polystyrene films adhered to glass substrates. Thin films are first transferred from donor substrates to an air-water interface, which is then used as a platform to locate them on a receiver substrate. We embed a microchannel at the back of the device to evacuate the air trapped in the opening, through which the pressure is applied. We quantify the height and the radius of the blister to estimate the adhesion energy using the available expressions correlating the normal force and the moment with the shape of the blister. The present blister test provided an adhesion energy per unit area of G = 18±2 mJ/m^2 for polystyrene on glass, which is in good agreement with the measurement of G = 14±2 mJ/m^2 found in our independent cleavage test.
منابع مشابه
Graphene: show of adhesive strength.
G raphite is composed of layers of carbon atoms that are held together by strong covalent bonds within each graphene layer and relatively weak van der Waals forces between the layers. The mechanical properties of graphite — it is anisotropic and prone to interlayer cleavage — are closely related to the characteristics of these forces. Furthermore, according to recent work at the University of C...
متن کاملUltrathin oxide films by atomic layer deposition on graphene.
In this paper, a method is presented to create and characterize mechanically robust, free-standing, ultrathin, oxide films with controlled, nanometer-scale thickness using atomic layer deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pr...
متن کاملTheoretical Study on Synchronous Characterization of Surface and Interfacial Mechanical Properties of Thin-Film/Substrate Systems with Residual Stress Based on Pressure Blister Test Technique
In this study, based on the pressure blister test technique, a theoretical study on the synchronous characterization of surface and interfacial mechanical properties of thin-film/substrate systems with residual stress was presented, where the problem of axisymmetric deformation of a blistering film with initial stress was analytically solved and its closed-form solution was presented. The expre...
متن کاملBlister patterns and energy minimization in compressed thin films on compliant substrates
This paper is motivated by the complex blister patterns sometimes seen in thin elastic films on thick, compliant substrates. These patterns are often induced by an elastic misfit which compresses the film. Blistering permits the film to expand locally, reducing the elastic energy of the system. It is therefore natural to ask: what is the minimum elastic energy achievable by blistering on a fixe...
متن کاملMechanical Properties of Ultrananocrystalline Diamond Thin Films Relevant to MEMS/NEMS Devices
The mechanical properties of ultrananocrystalline diamond (UNCD) thin films were measured using microcantilever deflection and membrane deflection techniques. Bending tests on several free-standing UNCD cantilevers, 0.5 μm thick, 20 μm wide and 80 μm long, yielded elastic modulus values of 916–959 GPa. The tests showed good reproducibility by repeated testing on the same cantilever and by testi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2017